Introduction

- What are some topics you expect to study this year in physics?
- The principles of physics govern our everyday lives. Do you know any of the laws of physics?
 - ▶ If so, describe the law or rule of physics as you understand it.
- Do the laws of physics ever change?

Name	Subjects	Examples
Mechanics	motion and its causes, interactions between objects	falling objects, friction, weight, spinning objects
Thermodynamics	heat and temperature	melting and freezing processes, engines, refrigerators
Vibrations and wave phenomena	specific types of repetitive motions	springs, pendulums, sound
Optics	light	mirrors, lenses, color, astronomy
Electromagnetism	electricity, magnetism, and light	electrical charge, cir- cuitry, permanent mag- nets, electromagnets
Relativity	particles moving at any speed, including very high speeds	particle collisions, particle accelerators, nuclear energy
Quantum mechanics	behavior of submicro- scopic particles	the atom and its parts

Scientific Method

Make observations and collect data that lead to a question.

Formulate and objectively test hypotheses by experiments.

Interpret results, and revise the hypothesis if necessary.

State conclusions in a form that can be evaluated by others.

- Models are often used to explain the principles of physics.
- Systems are defined to study the important components.
- All experiments must be "controlled."
 - Limit the experiment to testing one factor at a time.

Hypotheses

- A hypothesis is a reasonable explanation for observations.
- Before Galileo, scientists believed heavy objects fell more rapidly than light objects.
- Galileo considered the situation shown.
 - If the heavy brick falls faster, what would happen if they were tied together?

Galileo's Hypothesis

- Since the two bricks can't fall faster and slower than the heavy brick, Galileo concluded the original hypothesis was wrong.
- Galileo's hypothesis:
 - All objects fall at the same rate in the absence of air resistance.

Galileo's Hypothesis

(d)

Introduction

- What system of measurement is used in physics?
- ls a measurement of 2 cm different from one of 2.00 cm?
 - ► If so, how?
- What is the area of a strip of paper measuring 97.3 cm x 5.85 cm? How much should you round off your answer?

Measurements

- Dimension the kind of physical quantity being measured
 - Examples: length, mass, time, volume, and so on
 - Each dimension is measured in specific units.
 - meters, kilograms, seconds, liters, and so on
 - Derived units are combinations of other units.
 - ▶ m/s, kg/m³, and many others
- Scientists use the SI system of measurement.

Table 2	SI Standards
---------	---------------------

Unit	Original standard	Current standard
meter (length)	1 10 000 000 distance from equator to North Pole	the distance traveled by light in a vacuum in $3.33564095 \times 10^{-9}$ s
kilogram (mass)	mass of 0.001 cubic meters of water	the mass of a specific platinum-iridium alloy cylinder
second (time)	$\left(\frac{1}{60}\right)\left(\frac{1}{60}\right)\left(\frac{1}{24}\right) =$ 0.000 011 574 average solar days	9 192 631 770 times the period of a radio wave emitted from a cesium-133 atom

Prefixes

Table 3 **Some Prefixes for Powers of 10 Used with Metric Units**

Power	Prefix	Abbreviation	Power	Prefix	A bbreviation
10 ⁻¹⁸	atto-	a	10 ⁻¹	deci-	d
10^{-15}	femto-	f	10 ¹	deka-	da
10^{-12}	pico-	Р	10 ³	kilo-	k
10 ⁻⁹	nano-	n	10 ⁶	mega-	М
10 ⁻⁶	micro-	μ (Greek	10 ⁹	giga-	G
		letter mu)	10 ¹²	tera-	Т
10 ⁻³	milli-	m	10 ¹⁵	peta-	Р
10 ⁻²	centi-	С	10 ¹⁸	exa-	Е

Converting Units

- Build a conversion factor from the previous table. Set it up so that units cancel properly.
- Example Convert 2.5 kg into g.
 - Build the conversion factor:

$$\frac{10^3 \text{ g}}{1 \text{ kg}}$$

- ► This conversion factor is equivalent to 1.
 - ▶ 10³ g is equal to 1 kg
- Multiply by the conversion factor. The units of kg cancel and the answer is 2500 g.

$$2.5 \text{ kg} \times \frac{10^3 \text{ g}}{1 \text{ kg}} = 2500 \text{ g}$$

- Try converting
 - ▶ .025 g into mg
 - .22 km into cm

Classroom Practice Problem

- If a woman has a mass of 60 000 000 mg, what is her mass in grams and in kilograms?
 - Answer: 60 000 g or 60 kg

Accuracy and Precision

- Precision is the degree of exactness for a measurement.
 - It is a property of the instrument used.
 - ► The length of the pencil can be estimated to tenths of centimeters.
- Accuracy is how close the measurement is to the correct value.

Errors in Measurement

- Instrument error
 - Instrument error is caused by using measurement instr<mark>uments that are flawed in some way.</mark>
 - Instruments generally have stated accuracies such as "accurate to within 1%."
- Method error
 - Method error is caused by poor techniques (see picture below).

Significant Figures

- Significant figures are the method used to indicate the precision of your measurements.
- Significant figures are those digits that are known with certainty plus the first digit that is uncertain.
 - If you know the distance from your home to school is between 12.0 and 13.0 miles, you might say the distance is 12.5 miles.
 - ▶ The first two digits (1 and 2) are certain and the last digit (5) is uncertain.

Counting Significant Figures

Rule

- 1. Zeros between other nonzero digits are significant.
- 2. Zeros in front of nonzero digits are not significant.
- 3. Zeros that are at the end of a number and also to the right of the decimal are significant.
- 4. Zeros at the end of a number but to the left of a decimal are significant if they have been measured or are the first estimated digit; otherwise, they are not significant. In this book, they will be treated as not significant. (Some books place a bar over a zero at the end of a number to indicate that it is significant. This textbook will use scientific notation for these cases instead.)

- Examples
 - > 50.3 m
 - > 3.0025 s
 - ▶ 0.892 kg
 - ▶ 0.0008 ms
 - ▶ 57.00 g
 - > 2.000 000 kg
 - ▶ 1000 m
 - **>** 20 m
- Scientific notation simplifies counting significant figures.

Section 2

Rounding

Table 6 Rules for Rounding in Calculations			
What to do	When to do it		
round down	 whenever the digit following the last significant figure is a 0, 1, 2, 3, or 4 		
	if the last significant figure is an even number and the next digit is a 5, with no other nonzero digits		
round up	 whenever the digit following the last significant figure is a 6, 7, 8, or 9 		
	if the digit following the last significant figure is a 5 followed by a nonzero digit		
	• if the last significant figure is an odd number and the next digit is a 5, with no other nonzero digits		

- Round to 3 figures:
 - > 30.24
 - > 32.25
 - > 32.65000
 - **22.49**
 - **54.7511**
 - **54.75**
 - 79.3500

Calculating with Significant Figure

Type of calculation	Rule	
addition or subtraction	Given that addition and subtraction take place in columns, round the final answer to the first column from the left containing an estimated digit.	> 97.3 + 5.85
multiplication or division	The final answer has the same number of significant figures as the measurement having the smallest number of significant figures.	► 123 x 5.35